A Note on Expressive Coalgebraic Logics for Finitary Set Functors

نویسنده

  • Lawrence S. Moss
چکیده

This paper has two purposes. The first is to present a final coalgebra construction for finitary endofunctors on Set that uses a certain subset L ∗ of the limit L of the first ω terms in the final sequence. L∗ is the set of points in L which arise from all coalgebras using their canonical morphisms into L, and it was used earlier for different purposes in Kurz and Pattinson [5]. Viglizzo in [11] showed that the same set L∗ carried a final coalgebra structure for functors in a certain inductively defined family. Our first goal is to generalize this to all finitary endofunctors; the result is implicit in Worrell [12]. The second goal is to use the final coalgebra construction to propose coalgebraic logics similar to those in [6] but for all finitary endofunctors F on Set. This time one can dispense with all conditions on F , construct a logical language LF directly from it, and prove that two points in a coalgebra satisfy the same sentences of LF iff they are identified by the final coalgebra morphism. The language LF is very spare, having no boolean connectives. This work on LF is thus a re-working of coalgebraic logic for finitary functors on sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Categorical Framework for Coalgebraic Modal Logic

A category of one-step semantics is introduced to unify different approaches to coalgebraic logic parametric in a contravariant functor that assigns to the state space its collection of predicates with propositional connectives. Modular constructions of coalgebraic logic are identified as colimits, limits, and tensor products, extending known results for predicate liftings. Generalised predicat...

متن کامل

Finitary logics for coalgebras with branching

The purpose of this dissertation is to further previous work on coalgebras as infinite statebased transition systems and their logical characterisation with particular focus on infinite regular behaviour and branching. Finite trace semantics is well understood [DR95] for nondeterministic labelled transition systems, and has recently [Jac04, HJS06] been generalised to a coalgebraic level where m...

متن کامل

Coalgebraic Modal Logic Beyond Sets

Polyadic coalgebraic modal logic is studied in the setting of locally presentable categories. It is shown that under certain assumptions, accessible functors admit expressive logics for their coalgebras. Examples include typical functors used to describe systems with name binding, interpreted in nominal sets.

متن کامل

On monotone modalities and adjointness

We fix a logical connection (Stone Pred : Set op −→ BA given by 2 as a schizophrenic object) and study coalgebraic modal logic that is induced by a functor T : Set −→ Set which is finitary, standard, preserves weak pullbacks and finite sets. We prove that for any such T , the cover modality nabla is a left (and its dual delta is a right) adjoint relative to Pω. We then consider monotone unary m...

متن کامل

Proof systems for Moss' coalgebraic logic

We study Gentzen-style proof theory of the finitary version of the coalgebraic logic introduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic type functor T , uses a single modal operator ∇T of arity given by the functor T itself, and its semantics is defined in term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Log. Comput.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010